This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282318 #17 Dec 17 2017 03:15:20 %S A282318 0,0,0,1,1,0,1,0,2,1,0,1,2,2,1,1,1,4,2,2,2,2,1,3,3,3,2,3,3,4,1,2,4,5, %T A282318 2,4,2,6,5,4,4,6,3,5,6,6,4,5,3,6,3,6,5,8,3,4,4,7,6,6,4,5,8,6,6,7,2,7, %U A282318 9,8,5,7,6,8,8,8,8,9,3,8,9,10,8,8,5,10,6,9,10,13,4,6,8,12,10,9,8,10,12,10,9,9,7,8,11,12,9,10 %N A282318 Number of ways of writing n as a sum of a prime and a nonprime squarefree number. %C A282318 Conjecture: a(n) > 0 for all n > 10. %H A282318 Robert Israel, <a href="/A282318/b282318.txt">Table of n, a(n) for n = 0..10000</a> %H A282318 Ilya Gutkovskiy, <a href="/A282318/a282318.pdf">Extended graphical example</a> %F A282318 G.f.: (Sum_{i>=1} x^prime(i))*(x + Sum_{j>=2} sgn(omega(j)-1)*mu(j)^2*x^j), where omega(j) is the number of distinct primes dividing j (A001221) and mu(j) is the Moebius function (A008683). %e A282318 a(17) = 4 because we have [15, 2], [14, 3], [11, 6] and [10, 7]. %t A282318 nmax = 107; CoefficientList[Series[(Sum[x^Prime[i], {i, 1, nmax}]) (x + Sum[Sign[PrimeNu[j] - 1] MoebiusMu[j]^2 x^j, {j, 2, nmax}]), {x, 0, nmax}], x] %o A282318 (MATLAB) %o A282318 N = 200; % to get a(0) to a(N) %o A282318 Primes = primes(N); %o A282318 B = zeros(1,N); %o A282318 B(Primes) = 1; %o A282318 LPrimes = Primes(Primes .^ 2 < N); %o A282318 SF = 1 - B; %o A282318 for p = LPrimes %o A282318 SF(p^2:p^2:N) = 0; %o A282318 end %o A282318 C = conv(SF, B); %o A282318 C = [0,0,C(1:N-1)] % _Robert Israel_, Feb 12 2017 %Y A282318 Cf. A001221, A000469, A008683, A098983. %K A282318 nonn,look %O A282318 0,9 %A A282318 _Ilya Gutkovskiy_, Feb 11 2017