This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282321 #27 Sep 08 2022 08:46:18 %S A282321 11,41,71,101,191,281,311,431,461,521,641,821,881,1031,1061,1091,1151, %T A282321 1301,1451,1481,1721,1871,1931,2081,2111,2141,2381,2591,2711,2801, %U A282321 3251,3371,3461,3581,3671,3821,3851,4001,4091,4241,4271,4421,4481,4721,4931,5021 %N A282321 Lesser of twin primes congruent to 11 (mod 30). %C A282321 The union of [this sequence and A282322] is A132241. %C A282321 The union of [{3, 5}, this sequence, A282323 and A060229] is the lesser of twin primes sequence A001359. %C A282321 The union of [{3, 5, 7}, A282321 to A282326] is the twin primes sequence A001097. %H A282321 Chai Wah Wu, <a href="/A282321/b282321.txt">Table of n, a(n) for n = 1..10000</a> %p A282321 a:={}: %p A282321 for i from 1 to 1229 do %p A282321 if isprime(ithprime(i)+2) and ithprime(i) mod 30 = 11 then %p A282321 a:={op(a),ithprime(i)}: %p A282321 fi: %p A282321 od: %p A282321 a; %o A282321 (Magma) [p: p in PrimesUpTo(5000) | IsPrime(p+2) and p mod 30 eq 11 ]; // _Vincenzo Librandi_, Feb 12 2017 %o A282321 (PARI) list(lim)=my(v=List(), p=2); forprime(q=3, lim+2, if(q-p==2 && q%30==13, listput(v, p)); p=q); Vec(v) \\ _Charles R Greathouse IV_, Feb 14 2017 %Y A282321 Subset of A001097, A001359, A132232, A132241 and A132247. %Y A282321 Cf. A006512, A232880, A232881, A232882, A282322, A282323, A060229, A060229, A282326. %K A282321 nonn %O A282321 1,1 %A A282321 _Martin Renner_, Feb 11 2017