cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282327 Expansion of exp( Sum_{n>=1} sigma_3(2*n)*x^n/n ) in powers of x.

This page as a plain text file.
%I A282327 #32 Mar 04 2017 13:48:38
%S A282327 1,9,77,534,3320,18933,100770,506697,2428161,11161765,49469005,
%T A282327 212246744,884491121,3589900607,14223638534,55122970206,209307080221,
%U A282327 779837798559,2854660220661,10278494869342,36439277959593,127311828611819,438712861233581
%N A282327 Expansion of exp( Sum_{n>=1} sigma_3(2*n)*x^n/n ) in powers of x.
%H A282327 Seiichi Manyama, <a href="/A282327/b282327.txt">Table of n, a(n) for n = 0..1000</a>
%F A282327 a(n) = (1/n)*Sum_{k=1..n} sigma_3(2*k)*a(n-k). - _Seiichi Manyama_, Mar 04 2017
%Y A282327 Cf. exp( Sum_{n>=1} sigma_k(2*n)*x^n/n ): A182818 (k=1), A283224 (k=2), this sequence (k=3).
%Y A282327 Cf. exp( Sum_{n>=1} sigma_3(m*n)*x^n/n ): A023871 (m=1), this sequence (m=2), A283244 (m=3).
%K A282327 nonn
%O A282327 0,2
%A A282327 _Seiichi Manyama_, Mar 03 2017