This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282328 #13 Feb 16 2025 08:33:41 %S A282328 1,-1272,351432,89559456,-28689603384,-3415837464144,-155926897275744, %T A282328 -3967939206760128,-65540990858009400,-777517458842153496, %U A282328 -7105797244669716432,-52584588767807410464,-326903749149928526688,-1755591468945924647184 %N A282328 Coefficients in q-expansion of E_4*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973. %H A282328 Seiichi Manyama, <a href="/A282328/b282328.txt">Table of n, a(n) for n = 0..1000</a> %H A282328 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a> %t A282328 terms = 14; %t A282328 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A282328 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A282328 E4[x]*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *) %Y A282328 Cf. A004009 (E_4), A013973 (E_6). %Y A282328 Cf. A013974 (E_4*E_6 = E_10), A282287 (E_4*E_6^2), this sequence (E_4*E_6^3). %K A282328 sign %O A282328 0,2 %A A282328 _Seiichi Manyama_, Feb 12 2017