cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282330 Coefficients in q-expansion of E_4^6, where E_4 is the Eisenstein series A004009.

This page as a plain text file.
%I A282330 #16 Feb 16 2025 08:33:41
%S A282330 1,1440,876960,292072320,57349833120,6660135541440,436536302762880,
%T A282330 15172132360815360,327295477379498400,4913576699608450080,
%U A282330 55439481453769056960,496426192564963006080,3672749219557161663360,23148323907214334109120
%N A282330 Coefficients in q-expansion of E_4^6, where E_4 is the Eisenstein series A004009.
%H A282330 Seiichi Manyama, <a href="/A282330/b282330.txt">Table of n, a(n) for n = 0..1000</a>
%H A282330 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>
%F A282330 G.f.: (1 + 240 Sum_{i>=1} i^3 q^i/(1-q^i))^6.
%t A282330 terms = 14;
%t A282330 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282330 E4[x]^6 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282330 Cf. A004009 (E_4), A008410 (E_4^2), A008411 (E_4^3), A282012 (E_4^4), A282015 (E_4^5), this sequence (E_4^6).
%K A282330 nonn
%O A282330 0,2
%A A282330 _Seiichi Manyama_, Feb 12 2017