cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282331 Coefficients in q-expansion of E_6^4, where E_6 is the Eisenstein series A013973.

This page as a plain text file.
%I A282331 #16 Feb 16 2025 08:33:41
%S A282331 1,-2016,1457568,-411997824,16227967392,6497071680960,440015323483008,
%T A282331 15172068869975808,327221898778968480,4913597307075535008,
%U A282331 55440561879404210880,496424806634688962688,3672744471642078903168,23148319448757751932096
%N A282331 Coefficients in q-expansion of E_6^4, where E_6 is the Eisenstein series A013973.
%H A282331 Seiichi Manyama, <a href="/A282331/b282331.txt">Table of n, a(n) for n = 0..1000</a>
%H A282331 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EisensteinSeries.html">Eisenstein Series.</a>
%F A282331 E6(q)^4 = (1 - 504 Sum_{i>=1} sigma_5(i)q^i)^4 where sigma_5(n) is A001160.
%t A282331 terms = 14;
%t A282331 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t A282331 E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282331 Cf. A013973 (E_6), A280869 (E_6^2), A282253 (E_6^3), this sequence (E_6^4).
%Y A282331 Cf. A282210 (E_2^4), A282012 (E_4^4), this sequence (E_6^4).
%K A282331 sign
%O A282331 0,2
%A A282331 _Seiichi Manyama_, Feb 12 2017