A282342 a(n) is the smallest prime number, with sum of digits equals n and a(n) is greater than previous nonzero terms, except if this is not possible in which case a(n)=0.
0, 2, 3, 13, 23, 0, 43, 53, 0, 73, 83, 0, 139, 149, 0, 277, 359, 0, 379, 389, 0, 499, 599, 0, 997, 1889, 0, 1999, 2999, 0, 4999, 6899, 0, 17989, 18899, 0, 29989, 39989, 0, 49999, 59999, 0, 79999, 98999, 0, 199999, 389999, 0, 598999, 599999, 0, 799999, 989999, 0, 2998999
Offset: 1
Examples
a(23) = 599 because 599 is a prime number greater than a(22) = 499 and the sum of its digits is 5 + 9 + 9 = 23. a(24) = 0 because 24 (mod 3) = 0.
Crossrefs
Cf. A067180.
Programs
-
Mathematica
a = {1}; Do[If[n != 3 && Divisible[n, 3], AppendTo[a, 0], p = NextPrime@ Max@ a; While[Total@ IntegerDigits@ p != n, p = NextPrime@ p]; AppendTo[a, p]], {n, 2, 57}]; a (* Michael De Vlieger, Feb 12 2017 *)
-
PARI
{ print1(0", "2", "); n=3;p=3;sp=3; while(p<1000000, while(sp<>n, p=nextprime(p+1); sp=sumdigits(p); ); print1(p", "); n++;if(n%3==0,n++;print1(0", ")); ) }
Comments