This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282357 #12 Feb 27 2018 02:58:01 %S A282357 1,-1032,48312,171162336,-6444771144,-10105554483504, %T A282357 -1037089473751584,-48959817978105408,-1378102838778701640, %U A282357 -26186640301645703016,-364779940958775418032,-3952291567255306906464,-34798629548716507265568,-257403564989318828310384 %N A282357 Coefficients in q-expansion of E_4^2*E_6^3, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973. %H A282357 Seiichi Manyama, <a href="/A282357/b282357.txt">Table of n, a(n) for n = 0..1000</a> %t A282357 terms = 14; %t A282357 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A282357 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A282357 E4[x]^2*E6[x]^3 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *) %Y A282357 Cf. A008410 (E_4^2 = E_8), A058550 (E_4^2*E_6 = E_14), A282292 (E_4^2*E_6^2 = E_10^2), this sequence (E_4^2*E_6^3). %K A282357 sign %O A282357 0,2 %A A282357 _Seiichi Manyama_, Feb 13 2017