cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282378 Primes of the form (p^2 + q^2)/2 such that (p^4 + q^4)/2 is prime, where p and q are primes.

This page as a plain text file.
%I A282378 #10 Feb 14 2017 00:55:58
%S A282378 17,89,97,149,157,229,241,769,937,1109,1117,1129,1249,1549,1753,2161,
%T A282378 2221,2389,3301,3769,4129,4261,4801,4909,5113,5449,5569,5869,6121,
%U A282378 6469,7369,7621,7681,8089,8329,8389,8761,9649,10009,10429,11161,11941,12241,12409
%N A282378 Primes of the form (p^2 + q^2)/2 such that (p^4 + q^4)/2 is prime, where p and q are primes.
%H A282378 Charles R Greathouse IV, <a href="/A282378/b282378.txt">Table of n, a(n) for n = 1..10000</a>
%o A282378 (PARI) list(lim)=my(v=List(),p2,p4,t); lim\=1; if(lim<9,lim=9); forprime(p=3,sqrtint(2*lim-9), p2=p^2; p4=p2^2; forprime(q=3, min(sqrtint(2*lim-p2),p), if(isprime(t=(p2+q^2)/2) && isprime((p4+q^4)/2), listput(v, t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 14 2017
%Y A282378 Subsequence of A103739.
%K A282378 nonn
%O A282378 1,1
%A A282378 _Thomas Ordowski_ and _Altug Alkan_, Feb 13 2017
%E A282378 More terms from _Arkadiusz Wesolowski_, Feb 13 2017