cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282382 Coefficients in q-expansion of E_4^6*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

This page as a plain text file.
%I A282382 #19 Feb 27 2018 02:58:07
%S A282382 1,936,134568,-173988576,-104617833048,-27210540914064,
%T A282382 -3910401774129888,-322823174243838912,-15429983442476298840,
%U A282382 -469709326015243815672,-9973673112569954220432,-158215072218253260221088,-1972939697011615168926432
%N A282382 Coefficients in q-expansion of E_4^6*E_6, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
%H A282382 Seiichi Manyama, <a href="/A282382/b282382.txt">Table of n, a(n) for n = 0..1000</a>
%t A282382 terms = 13;
%t A282382 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282382 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t A282382 E4[x]^6*E6[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282382 Cf. A004009 (E_4), A013973 (E_6), A013974 (E_4*E_6 = E_10), A058550 (E_4^2*E_6 = E_14), A282000 (E_4^3*E_6), A282047 (E_4^4*E_6), A282048 (E_4^5*E_6), this sequence (E_4^6*E_6).
%K A282382 sign
%O A282382 0,2
%A A282382 _Seiichi Manyama_, Feb 16 2017