A282390 Width of polyominoes in A282389.
3, 5, 8, 14, 27, 53, 104, 206, 410, 818, 1635, 3269, 6536, 13070, 26139, 52277, 104552, 209102, 418202, 836402, 1672803, 3345605, 6691209, 13382417, 26764832, 53529662, 107059322, 214118642, 428237283, 856474565, 1712949128, 3425898254, 6851796507
Offset: 1
Keywords
Examples
a(1) = 3 a(2) = 2 * 3 - 1 = 5 a(3) = 2 * 5 - 2 = 8 a(4) = 2 * 8 - 2 = 14 a(5) = 2 * 14 - 1 = 27 a(6) = 2 * 27 - 1 = 53 a(7) = 2 * 53 - 2 = 104 a(8) = 2 * 104 - 2 = 206 a(9) = 2 * 206 - 2 = 410 a(10) = 2 * 410 - 2 = 818 a(11) = 2 * 818 - 1 = 1635 a(12) = 2 * 1635 - 1 = 3269 a(13) = 2 * 3269 - 2 = 6536 a(14) = 2 * 6536 - 2 = 13070 a(15) = 2 * 13070 - 1 = 26139 a(16) = 2 * 26139 - 1 = 52277 a(17) = 2 * 52277 - 2 = 104552 a(18) = 2 * 104552 - 2 = 209102
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..3300
Crossrefs
Cf. A282389.
Programs
-
Python
w, h, bp, bp2 = 3, 2, 0b10, 0b01 for i in range(1, 10): print(w) w, h, bp, bp2 = w*2-(2 if (bp&1) else 1), 2**i+1, ((bp2&((1<<(h-1))-1))<
>1) for i in range(100): print(w) w, h, bp, bp2 = w*2-(2 if (bp&1) else 1), h-1, bp2, (bp>>1) # Andrey Zabolotskiy, Feb 14 2017
Formula
a(1) = 3, a(n) = 2*a(n-1) - k for n > 1, where k is the width of the central step in the "ladder", which is 1 or 2.
Comments