This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282432 #22 Sep 08 2022 08:46:18 %S A282432 0,0,1,1,1,2,0,2,0,1,1,2,0,3,0,2,0,1,0,3,0,2,0,1,0,2,0,1,1,2,0,4,0,2, %T A282432 0,0,0,3,0,3,0,1,0,3,0,3,0,1,0,3,0,1,0,1,0,3,0,1,0,1,0,3,0,2,0,0,0,3, %U A282432 0,3,0,1,0,3,0,2,0,0,0,3,0,2,1,2,0,3,0,3,0,1,0,3,0,2,0,0,0,4,0,3,0,1,0,3,0 %N A282432 Number of primes of the form n - 3^k. %F A282432 a(A282430(n)) = 0. %F A282432 G.f.: ( Sum_{i>=0} x^(3^i) ) * ( Sum_{j>=1} x^prime(j) ). - _Ilya Gutkovskiy_, Feb 10 2022 %e A282432 a(14) = 3; 14 - 3^0 = 13, 14 - 3 = 11, 14 - 3^2 = 5, three primes. %p A282432 A282432 := proc(n) %p A282432 a := 0 ; %p A282432 for k from 0 do %p A282432 if n-3^k < 2 then %p A282432 return a ; %p A282432 elif isprime(n-3^k) then %p A282432 a := a+1 ; %p A282432 end if; %p A282432 end do: %p A282432 end proc: %p A282432 seq(A282432(n),n=1..80) ; # _R. J. Mathar_, Mar 07 2022 %o A282432 (Magma) lst:=[]; for n in [1..105] do c:=0; e:=Floor(Log(3, n)); k:=0; while k le e do p:=n-3^k; if IsPrime(p) then c+:=1; end if; k+:=1; end while; Append(~lst, c); end for; lst; %o A282432 (PARI) ispp3(n) = (n==1) || (n==3) || (ispower(n,,&p) && (p==3)); %o A282432 a(n) = {my(nb = 0); forprime(p=2, n, nb += ispp3(n-p);); nb;} \\ _Michel Marcus_, Feb 18 2017 %Y A282432 Cf. A109925, A282430. %K A282432 nonn,easy %O A282432 1,6 %A A282432 _Arkadiusz Wesolowski_, Feb 15 2017