This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282465 #46 Sep 08 2022 08:46:18 %S A282465 1,46,47,93,140,233,373,606,979,1585,2564,4149,6713,10862,17575,28437, %T A282465 46012,74449,120461,194910,315371,510281,825652,1335933,2161585, %U A282465 3497518,5659103,9156621,14815724,23972345,38788069,62760414,101548483,164308897,265857380,430166277 %N A282465 a(n) = 11*Fibonacci(n+3) + Fibonacci(n-8) with n>=0. %C A282465 Similar sequences with the formula h*Fibonacci(n+k) + Fibonacci(n+k-h): %C A282465 h= 1, k=-1: A000045; %C A282465 h= 2, k= 1: A013655; %C A282465 h= 3, k=-2: A118658 = 2*A212804; %C A282465 h= 4, k= 2: A022379 = 3*A000204; %C A282465 h= 5, k= 1: A022113; %C A282465 h= 6, k= 2: A022125; %C A282465 h= 7, k= 3: A097657; %C A282465 h= 8, k= 2: A022355 = 21*A000045; %C A282465 h= 9, k= 3: 10, 32, 42, 74, 116, 190, 306, 496, 802, ... = 2*A022140; %C A282465 h=10, k= 3: 33, 22, 55, 77, 132, 209, 341, 550, 891, ... = 11*A013655; %C A282465 h=11, k= 3: this sequence. %H A282465 Indranil Ghosh, <a href="/A282465/b282465.txt">Table of n, a(n) for n = 0..4769</a> %H A282465 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A282465 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,1). %F A282465 G.f.: (1 + 45*x)/(1 - x - x^2). %F A282465 a(n) = a(n-1) + a(n-2). %F A282465 a(n) = a(i)*Fibonacci(n-i+1) + a(i-1)*Fibonacci(n-i). Examples: %F A282465 for i= 3, a(3)=93, a(2)= 47: a(n) = 93*Fibonacci(n-2) + 47*Fibonacci(n-3); %F A282465 for i=-1, a(-1)=45, a(-2)=-44: a(n) = 45*Fibonacci(n+2) - 44*Fibonacci(n+1). %F A282465 Other formulae: %F A282465 a(n) = 44*Fibonacci(n) + Fibonacci(n+2), %F A282465 a(n) = 45*Fibonacci(n) + Fibonacci(n+1), %F A282465 a(n) = 46*Fibonacci(n) + Fibonacci(n-1), %F A282465 a(n) = 47*Fibonacci(n) - Fibonacci(n-2). %F A282465 a(n) = ((91 + sqrt(5))*((1 + sqrt(5))/2)^n - (91 - sqrt(5))*((1 - sqrt(5))/2)^n)/sqrt(20). %t A282465 Table[11 Fibonacci[n + 3] + Fibonacci[n - 8], {n, 0, 40}] %t A282465 LinearRecurrence[{1,1},{1,46},36] (* or *) CoefficientList[Series[(1 + 45*x)/(1 - x - x^2) , {x,0,35}],x] (* _Indranil Ghosh_, Feb 22 2017 *) %o A282465 (Magma) [11*Fibonacci(n+3)+Fibonacci(n-8): n in [0..40]]; %o A282465 (PARI) a(n) = 11*fibonacci(n+3) + fibonacci(n-8) \\ _Indranil Ghosh_, Feb 23 2017 %Y A282465 Cf. A000045, A013655, A022113, A022125, A022355, A022379, A022379, A097657, A118658. %Y A282465 Cf. sequences with g.f. (1 + r*x)/(1 - x - x^2) for r = 2..31, respectively: A000204, A000285, A022095 - A022110, A022391 - A022402. %K A282465 nonn,easy %O A282465 0,2 %A A282465 _Bruno Berselli_, Feb 20 2017