cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282494 Number of ways to write n as x^4 + y^2 + z^2 + w^2 with y*(y+240*z) a positive square, where x,y,z,w are nonnegative integers.

Original entry on oeis.org

1, 2, 1, 1, 4, 4, 1, 1, 3, 5, 4, 1, 3, 6, 3, 1, 6, 7, 3, 5, 9, 5, 1, 2, 6, 11, 7, 1, 7, 9, 2, 2, 6, 5, 5, 7, 7, 4, 1, 4, 10, 11, 3, 1, 9, 8, 2, 1, 5, 10, 8, 7, 10, 10, 4, 6, 8, 5, 4, 3, 9, 11, 4, 1, 11, 12, 4, 7, 13, 10, 2, 5, 5, 7, 7, 3, 10, 9, 1, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 16 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
By the linked JNT paper, any nonnegative integer can be expressed as the sum of a fourth power and three squares, and each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(y-2*z) = 0. Whether z = 0 or y = 2*z, the number y*(y+240*z) is definitely a square.
See also A282463 and A282495 for similar conjectures.

Examples

			a(3) = 1 since 3 = 1^4 + 1^2 + 0^2 + 1^2 with 1*(1+240*0) = 1^2.
a(4) = 1 since 4 = 0^4 + 2^2 + 0^2 + 0^2 with 2*(2+240*0) = 2^2.
a(39) = 1 since 39 = 1^4 + 2^2 + 3^2 + 5^2 with 2*(2+240*3) = 38^2.
a(188) = 1 since 188 = 3^4 + 5^2 + 1^2 + 9^2 with 5*(5+240*1) = 35^2.
a(399) = 1 since 399 = 3^4 + 10^2 + 7^2 + 13^2 with 10*(10+240*7) = 130^2.
a(428) = 1 since 428 = 0^4 + 10^2 + 2^2 + 18^2 with 10*(10+240*2) = 70^2.
a(439) = 1 since 439 = 1^4 + 10^2 + 7^2 + 17^2 with 10*(10+240*7) = 130^2.
a(508) = 1 since 508 = 1^4 + 5^2 + 11^2 + 19^2 with 5*(5+240*11) = 115^2.
a(748) = 1 since 748 = 3^4 + 1^2 + 21^2 + 15^2 with 1*(1+240*21) = 71^2.
a(1468) = 1 since 1468 = 2^4 + 10^2 + 26^2 + 26^2 with 10*(10+240*26) = 250^2.
a(2828) = 1 since 2828 = 3^4 + 5^2 + 11^2 + 51^2 with 5*(5+240*11) = 115^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[y*(y+240*z)],r=r+1],{x,0,(n-1)^(1/4)},{y,1,Sqrt[n-x^4]},{z,0,Sqrt[n-x^4-y^2]}];Print[n," ",r];Continue,{n,1,80}]