cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282495 Number of ways to write n as x^4 + y^2 + z^2 + w^2 with y^2 + 228*y*z + 60*z^2 a square, where x,y,z are nonnegative integers and w is a positive integer.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 1, 1, 3, 4, 4, 3, 3, 3, 1, 1, 5, 6, 5, 5, 4, 2, 1, 2, 6, 8, 8, 4, 4, 4, 1, 2, 6, 7, 7, 6, 4, 4, 1, 3, 9, 8, 5, 3, 6, 4, 1, 2, 5, 8, 8, 7, 6, 6, 3, 3, 8, 6, 5, 4, 4, 6, 3, 2, 9, 11, 6, 6, 6, 5, 1, 3, 8, 8, 7, 4, 5, 5, 1, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 16 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
By the linked JNT paper, any nonnegative integer can be expressed as the sum of a fourth power and three squares, and each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z*(y-z) = 0. Whether z = 0 or y = z, the number y^2 + 228*y*z + 60*z^2 is definitely a square.
See also A282463 and A282494 for similar conjectures.

Examples

			a(7) = 1 since 7 = 1^4 + 1^2 + 1^2 + 2^2 with 1^2 + 228*1*1 + 60*1^2 = 17^2.
a(8) = 1 since 8 = 0^4 + 2^2 + 0^2 + 2^2 with 2^2 + 228*2*0 + 60*0^2 = 2^2.
a(15) = 1 since 15 = 1^4 + 1^2 + 3^2 + 2^2 with 1^2 + 228*1*3 + 60*3^2 = 35^2.
a(23) = 1 since 23 = 1^4 + 3^2 + 3^2 + 2^2 with 3^2 + 228*3*3 + 60*3^2 = 51^2.
a(71) = 1 since 71 = 1^4 + 5^2 + 6^2 + 3^2 with 5^2 + 228*5*6 + 60*6^2 = 95^2.
a(159) = 1 since 159 = 3^4 + 7^2 + 2^2 + 5^2 with 7^2 + 228*7*2 + 60*2^2 = 59^2.
a(623) = 1 since 623 = 3^4 + 1^2 + 10^2 + 21^2 with 1^2 + 228*1*10 + 60*10^2 = 91^2.
a(879) = 1 since 879 = 5^4 + 5^2 + 15^2 + 2^2 with 5^2 + 228*5*15 + 60*15^2 = 175^2.
a(1423) = 1 since 1423 = 1^4 + 7^2 + 2^2 + 37^2 with 7^2 + 228*7*2 + 60*2^2 = 59^2.
a(3768) = 1 since 3768 = 0^4 + 2^2 + 20^2 + 58^2 with 2^2 + 228*2*20 + 60*20^2 = 182^2.
		

Crossrefs

Programs

  • Mathematica
    Q[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-x^4-y^2-z^2]&&SQ[y^2+228*y*z+60*z^2],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,Sqrt[n-1-x^4-y^2]}];Print[n," ",r];Continue,{n,1,80}]