This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282497 #7 Feb 19 2017 14:04:56 %S A282497 2,1,3,1,1,2,1,3,1,2,1,3,1,1,2,2,1,1,1,3,1,1,2,1,1,3,1,1,1,2,1,1,3,1, %T A282497 1,1,1,1,2,1,1,3,1,2,1,1,1,3,1,2,1,1,2,1,2,1,2,1,3,1,1,2,1,1,3,1,2,1, %U A282497 2,1,1,2,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,2,1,1,3,1,2,1,3,1,2,1,2,1,3,1,1,2,1,2,1,1,1,2,1,1,3,1,1,1,1,3,1,1,1,1,2,1,1,3,1,1,2,1 %N A282497 'Somos expansion' of e: e=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=e. %C A282497 1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1<x/floor(x)<2. %H A282497 Yuriy Sibirmovsky, <a href="/A282497/b282497.txt">Table of n, a(n) for n = 0..1999</a> %F A282497 Product_{k>=0} a(k)^(1/2^k) = e. %e A282497 Integer part of e is 2. Integer part of e^2/4 is 1. %t A282497 $MaxExtraPrecision = 1000; %t A282497 x0 = E; %t A282497 Nm = 130; %t A282497 j = 1; %t A282497 Res = Table[1, {j, 1, Nm}]; %t A282497 While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000]; %t A282497 j++]; %Y A282497 Cf. A001113 (digits). %K A282497 nonn %O A282497 0,1 %A A282497 _Yuriy Sibirmovsky_, Feb 16 2017