This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282507 #30 Aug 22 2025 19:58:48 %S A282507 2,3,6,4,24,24,5,70,180,120,6,180,900,1440,720,7,434,3780,10920,12600, %T A282507 5040,8,1008,14448,67200,134400,120960,40320,9,2286,52164,367416, %U A282507 1134000,1723680,1270080,362880,10,5100,181500,1864800,8341200,19051200,23284800,14515200,3628800 %N A282507 Triangular array read by rows. T(n,k) is the number of chain topologies on an n-set with exactly k open sets where one of the open sets is a single point set, n >= 2, 3 <= k <= n+1. %C A282507 A chain topology is a topology that can be totally ordered by inclusion. %H A282507 Michael De Vlieger, <a href="/A282507/b282507.txt">Table of n, a(n) for n = 2..1226</a> (rows 2..50, flattened) %H A282507 Loïc Foissy, <a href="https://arxiv.org/abs/2304.00810">Hopf algebraic structures on hypergraphs and multi-complexes</a>, arXiv:2304.00810 [math.CO], 2023. %F A282507 E.g.f.: y^2*x/(1 - y*(exp(x) - 1)). Generally for chain topologies where the smallest nonempty open set has size m: (x^m/m!) * y^2/(1 - y*(exp(x) - 1)). %F A282507 A conjecture I made to Loic Foissy, who replied: sequence T(n,k) counts surjective maps [n]->> [k] such that k is obtained exactly once, whereas sequence A019538 b(n,k) counts surjective maps [n]->> [k]. To construct an element for T(n,k), you may choose the element of [n] giving k (n choices), then a surjection from the n-1 remaining elements to [k-1] (b(n-1,k-1) choices). This gives T(n,k) = n * b(n-1,k-1), if k,n>1. - _Tom Copeland_, Nov 10 2023 [So it is now a theorem, not a conjecture, right? - _N. J. A. Sloane_, Dec 23 2023] %e A282507 Triangle begins: %e A282507 2; %e A282507 3, 6; %e A282507 4, 24, 24; %e A282507 5, 70, 180, 120; %e A282507 6, 180, 900, 1440, 720; %e A282507 ... %t A282507 nn = 10; Map[Select[#, # > 0 &] &, Drop[Range[0, nn]! CoefficientList[Series[x/(1 - y (Exp[x] - 1)), {x, 0, nn}], {x, y}], 2]] // Grid %Y A282507 Cf. A119741 where the topologies are further restricted. %Y A282507 Row sums = A052882. %Y A282507 Cf. A019538. %K A282507 nonn,tabl,changed %O A282507 2,1 %A A282507 _Geoffrey Critzer_, Feb 16 2017