cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282531 Numbers k where records occur for d(k+1)/d(k), where d(k) is A000005(k).

This page as a plain text file.
%I A282531 #21 Jun 10 2024 14:28:13
%S A282531 1,11,23,47,59,167,179,239,359,719,839,1259,2879,3359,5039,7559,10079,
%T A282531 21839,33599,35279,37799,55439,100799,110879,166319,262079,327599,
%U A282531 415799,665279,831599,1081079,1441439,2827439,3326399,4989599,6320159,6486479,10533599
%N A282531 Numbers k where records occur for d(k+1)/d(k), where d(k) is A000005(k).
%C A282531 This sequence is infinite (Schinzel, 1954). - _Amiram Eldar_, Apr 18 2024
%H A282531 Amiram Eldar, <a href="/A282531/b282531.txt">Table of n, a(n) for n = 1..71</a> (terms 1..52 from Daniel Suteu)
%H A282531 Andrzej Schinzel, <a href="https://doi.org/10.5486/PMD.1954.3.3-4.11">Sur une propriété du nombre de diviseurs</a>, Publ. Math. (Debrecen), Vol. 3 (1954), pp. 261-262.
%t A282531 seq[kmax_] := Module[{d1 = 1, d2, rm = 0, r, s = {}}, Do[d2 = DivisorSigma[0, k]; r = d2 / d1; If[r > rm, rm = r; AppendTo[s, k-1]]; d1 = d2, {k, 2, kmax}]; s]; seq[10^6] (* _Amiram Eldar_, Apr 18 2024 *)
%t A282531 Module[{nn=840000},DeleteDuplicates[Thread[{Range[nn-1],#[[2]]/#[[1]]&/@Partition[ DivisorSigma[ 0,Range[nn]],2,1]}],GreaterEqual[#1[[2]],#2[[2]]]&]][[;;,1]] (* The program generates the first 30 terms of the sequence. *) (* _Harvey P. Dale_, Jun 10 2024 *)
%o A282531 (Perl)
%o A282531 use ntheory qw(:all);
%o A282531 for (my ($n, $m) = (1, 0) ; ; ++$n) {
%o A282531     my $d = divisors($n+1) / divisors($n);
%o A282531     if ($m < $d) {
%o A282531         $m = $d;
%o A282531         print "$n\n";
%o A282531     }
%o A282531 }
%o A282531 (PARI) lista(kmax) = {my(d1 = 1, d2, rm = 0, r); for(k = 2, kmax, d2 = numdiv(k); r = d2 / d1; if(r > rm, rm = r; print1(k-1, ", ")); d1 = d2);} \\ _Amiram Eldar_, Apr 18 2024
%Y A282531 Cf. A000005, A372092.
%K A282531 nonn
%O A282531 1,2
%A A282531 _Daniel Suteu_, Feb 18 2017