This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282541 #12 Feb 27 2018 07:09:02 %S A282541 1,192,-402048,-161431296,20329262976,23865942948480,5794392238723584, %T A282541 671204645516954112,41947216018774335360,1615253348424607402944, %U A282541 42337765240473386384640,812656088633074046171904,12060155362281020231526912 %N A282541 Coefficients in q-expansion of E_4^5*E_6^2, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973. %H A282541 Seiichi Manyama, <a href="/A282541/b282541.txt">Table of n, a(n) for n = 0..1000</a> %t A282541 terms = 13; %t A282541 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; %t A282541 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; %t A282541 E4[x]^5* E6[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *) %Y A282541 Cf. A280869 (E_6^2), A282287 (E_4*E_6^2), A282292 (E_4^2*E_6^2 = E_10^2), A282332 (E_4^3*E_6^2), A282403 (E_4^4*E_6^2), this sequence (E_4^5*E_6^2). %K A282541 sign %O A282541 0,2 %A A282541 _Seiichi Manyama_, Feb 17 2017