cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282543 Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.

This page as a plain text file.
%I A282543 #12 Feb 27 2018 07:09:13
%S A282543 1,-1536,551808,163854336,-93387735168,-9709554816000,
%T A282543 4142226444876288,642510156233453568,41792421673548259200,
%U A282543 1615606968766288470528,42343208407470359036160,812663841518551604717568,12060089370317565140003328
%N A282543 Coefficients in q-expansion of E_4^2*E_6^4, where E_4 and E_6 are respectively the Eisenstein series A004009 and A013973.
%H A282543 Seiichi Manyama, <a href="/A282543/b282543.txt">Table of n, a(n) for n = 0..1000</a>
%t A282543 terms = 13;
%t A282543 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282543 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t A282543 E4[x]^2*E6[x]^4 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282543 Cf. A008410 (E_4^2 = E_8), A058550 (E_4^2*E_6 = E_14), A282292 (E_4^2*E_6^2 = E_10^2), A282357 (E_4^2*E_6^3), this sequence (E_4^2*E_6^4).
%K A282543 sign
%O A282543 0,2
%A A282543 _Seiichi Manyama_, Feb 17 2017