cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282546 Coefficients in q-expansion of E_2*E_4^4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

This page as a plain text file.
%I A282546 #13 Feb 27 2018 04:58:08
%S A282546 1,936,331128,52972704,3355523352,16684536816,-1540796901408,
%T A282546 -39871325253312,-522168659242920,-4651083548616312,
%U A282546 -31647933913392432,-175516717881381408,-827283695234707872,-3413277291552455376,-12598120840018061376,-42296015537631706176
%N A282546 Coefficients in q-expansion of E_2*E_4^4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.
%H A282546 Seiichi Manyama, <a href="/A282546/b282546.txt">Table of n, a(n) for n = 0..1000</a>
%t A282546 terms = 16;
%t A282546 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t A282546 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282546 E2[x]* E4[x]^4 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282546 Cf. A006352 (E_2), A004009 (E_4), A282012 (E_4^4).
%Y A282546 Cf. A282019 (E_2*E_4), A282101 (E_2*E_4^2), A282549 (E_2*E_4^3), this sequence (E_2*E_4^4).
%K A282546 sign
%O A282546 0,2
%A A282546 _Seiichi Manyama_, Feb 18 2017