cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282550 Perfect powers that are the sum of two distinct proper prime powers (A246547).

This page as a plain text file.
%I A282550 #26 May 07 2017 13:21:06
%S A282550 25,36,81,125,144,196,324,512,576,1089,2304,2744,2916,5041,9216,14884,
%T A282550 16641,26244,36864,51984,147456,236196,589824,941192,1196836,2125764,
%U A282550 2359296,9437184,19131876,37748736,67125249,150994944,172186884,322828856,603979776
%N A282550 Perfect powers that are the sum of two distinct proper prime powers (A246547).
%C A282550 Intersection of A001597 and A225102. - _Michel Marcus_, Feb 18 2017
%C A282550 Terms t of A001597 such that A225099(t) > 0. - _Felix Fröhlich_, Feb 18 2017
%H A282550 Giovanni Resta, <a href="/A282550/b282550.txt">Table of n, a(n) for n = 1..45</a> (terms < 2*10^11)
%e A282550 512 = 2^9 is a term because 2^9 = 7^3 + 13^2.
%t A282550 Select[Union@ Map[Total, Subsets[With[{nn = 10^6}, Complement[ Select[ Range@ nn, PrimePowerQ], Prime[Range[PrimePi@ nn]]]], {2}]], # == 1 ||
%t A282550 GCD @@ FactorInteger[#][[All, 2]] > 1 &] (* _Michael De Vlieger_, Feb 18 2017, after _Harvey P. Dale_ at A246547 *)
%o A282550 (PARI) is(n) = if(!ispower(n), return(0), my(x=n-1, y=1); while(y < x, if(isprimepower(x) && isprimepower(y) && !ispseudoprime(x) && !ispseudoprime(y), return(1)); y++; x--)); 0 \\ _Felix Fröhlich_, Feb 18 2017
%Y A282550 Cf. A001597, A225099, A225102, A225106, A246547.
%K A282550 nonn
%O A282550 1,1
%A A282550 _Altug Alkan_, Feb 18 2017
%E A282550 More terms from _Felix Fröhlich_, Feb 18 2017
%E A282550 a(28)-a(35) from _Giovanni Resta_, May 07 2017