cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282569 Number of compositions (ordered partitions) of n into multiplicatively perfect numbers (A007422).

This page as a plain text file.
%I A282569 #5 Feb 16 2025 08:33:41
%S A282569 1,1,1,1,1,1,2,3,5,7,10,13,17,22,31,44,63,88,122,166,227,312,433,601,
%T A282569 836,1159,1604,2214,3056,4220,5837,8079,11188,15486,21424,29624,40961,
%U A282569 56641,78344,108379,149940,207427,286933,396880,548943,759273,1050234,1452740,2009545,2779745,3845085,5318633,7356839
%N A282569 Number of compositions (ordered partitions) of n into multiplicatively perfect numbers (A007422).
%H A282569 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePerfectNumber.html">Multiplicative Perfect Number</a>
%H A282569 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A282569 G.f.: 1/(1 - Sum_{k>=1} x^A007422(k)).
%e A282569 a(8) = 5 because we have [8], [6, 1, 1], [1, 6, 1], [1, 1, 6] and [1, 1, 1, 1, 1, 1, 1, 1].
%t A282569 nmax = 52; CoefficientList[Series[1/(1 - Sum[Boole[Sqrt[k]^DivisorSigma[0, k]/k == k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A282569 Cf. A007422, A236473.
%K A282569 nonn
%O A282569 0,7
%A A282569 _Ilya Gutkovskiy_, Feb 18 2017