cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282575 Triangular array read by rows. T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).

This page as a plain text file.
%I A282575 #19 Aug 08 2022 21:27:43
%S A282575 1,1,2,5,3,15,28,6,52,210,190,10,203,1506,3360,1340,15,877,10871,
%T A282575 48321,60270,9065,21,4140,80592,636300,1820056,1132880,57512,28,21147,
%U A282575 618939,8081928,45455676,76834926,21067452,344316,36,115975,4942070,101684115,1027544400,3860929170,3406410252,377190240,1966440,45
%N A282575 Triangular array read by rows.  T(n,k) is the number of minimal covers of an n-set with exactly k points that are in more than one set of the cover, n>=0, 0<=k<=max(0,n-2).
%H A282575 Alois P. Heinz, <a href="/A282575/b282575.txt">Rows n = 0..100, flattened</a>
%H A282575 T. Hearne and C. G. Wagner, <a href="http://dx.doi.org/10.1016/0012-365X(73)90141-6">Minimal covers of finite sets</a>, Discr. Math. 5 (1973), 247-251.
%F A282575 E.g.f.: (exp(x) - 1)^n/n!*exp(y*(2^n - n - 1)*x).
%e A282575 Triangle T(n,k) begins:
%e A282575 :    1;
%e A282575 :    1;
%e A282575 :    2;
%e A282575 :    5,     3;
%e A282575 :   15,    28,      6;
%e A282575 :   52,   210,    190,      10;
%e A282575 :  203,  1506,   3360,    1340,      15;
%e A282575 :  877, 10871,  48321,   60270,    9065,    21;
%e A282575 : 4140, 80592, 636300, 1820056, 1132880, 57512, 28;
%p A282575 T:= (n, k)-> binomial(n, k)*add(Stirling2(n-k, j)*(2^j-j-1)^k, j=0..n-k):
%p A282575 seq(seq(T(n,k), k=0..max(0,n-2)), n=0..12);  # _Alois P. Heinz_, Feb 18 2017
%t A282575 nn = 8; Drop[Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Sum[ (Exp[x] - 1)^n/n! Exp[y (2^n - n - 1) x], {n, 0,nn}], {x, 0, nn}], {x, y}]], 1] // Grid
%Y A282575 Cf. A035348. Row sums A046165. Column k=0 A000110.  Column k=1 A003466.
%Y A282575 Mirrored triangle gives A035347.
%K A282575 nonn,tabf
%O A282575 0,3
%A A282575 _Geoffrey Critzer_, Feb 18 2017