This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282578 #28 Dec 05 2021 10:32:12 %S A282578 12,5,5,3,62 %N A282578 Least k such that k^n is the sum of two distinct proper prime powers (A246547), or 0 if no such k exists. %C A282578 Corresponding values of k^n are 12, 25, 125, 81, 916132832, ... %H A282578 Wikipedia, <a href="http://en.wikipedia.org/wiki/Beal%27s_conjecture">Beal's conjecture</a> %F A282578 a(p) <= 2 * (2^p - 1) where p is in A000043 since (2^p - 1)^p + (2^p - 1)^(p + 1) = (2 * (2^p - 1))^p. %e A282578 a(1) = 12 because 12 = 2^2 + 2^3. %e A282578 a(2) = 5 because 5^2 = 2^4 + 3^2. %e A282578 a(3) = 5 because 5^3 = 2^2 + 11^2. %e A282578 a(4) = 3 because 3^4 = 2^5 + 7^2. %e A282578 a(5) = 62 because 62^5 = 31^5 + 31^6. %e A282578 a(9) = 2 because 2^9 = 7^3 + 13^2. %o A282578 (Python) %o A282578 from sympy import nextprime, perfect_power %o A282578 def ppupto(limit): # distinct proper prime powers <= limit %o A282578 p = 2; p2 = pk = p*p; pklist = [] %o A282578 while p2 <= limit: %o A282578 while pk <= limit: pklist.append(pk); pk *= p %o A282578 p = nextprime(p); p2 = pk = p*p %o A282578 return sorted(pklist) %o A282578 def sum_of_pp(n): %o A282578 pp = ppupto(n); ppset = set(pp) %o A282578 for p in pp: %o A282578 if p > n//2: break %o A282578 if n - p in ppset and n - p != p: return True %o A282578 return False %o A282578 def a(n): %o A282578 k = 2 %o A282578 while not sum_of_pp(k**n): k += 1 %o A282578 return k %o A282578 print([a(n) for n in range(1, 6)]) # _Michael S. Branicky_, Dec 05 2021 %Y A282578 Cf. A001597, A225102, A246547, A282550. %K A282578 nonn,more %O A282578 1,1 %A A282578 _Altug Alkan_, Feb 20 2017