This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282579 #23 Feb 16 2025 08:33:41 %S A282579 1,0,4,0,20,0,84,0,340,0,1364,0,5460,0,21844,0,87380,0,349524,0, %T A282579 1398100,0,5592404,0,22369620,0,89478484,0,357913940,0,1431655764,0, %U A282579 5726623060,0,22906492244,0,91625968980,0,366503875924,0,1466015503700,0,5864062014804 %N A282579 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 553", based on the 5-celled von Neumann neighborhood. %C A282579 Initialized with a single black (ON) cell at stage zero. %D A282579 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A282579 Robert Price, <a href="/A282579/b282579.txt">Table of n, a(n) for n = 0..126</a> %H A282579 Robert Price, <a href="/A282579/a282579.tmp.txt">Diagrams of first 20 stages</a> %H A282579 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A282579 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A282579 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A282579 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A282579 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A282579 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A282579 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A282579 Conjectures from _Colin Barker_, Feb 27 2017: (Start) %F A282579 a(n) = 4*(2^n - 1) / 3 for n>1 and even. %F A282579 a(n) = 0 for n odd. %F A282579 a(n) = 5*a(n-2) - 4*a(n-4) for n>4. %F A282579 G.f.: (1 - x^2 + 4*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)). %F A282579 (End) %t A282579 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}]; %t A282579 code = 553; stages = 128; %t A282579 rule = IntegerDigits[code, 2, 10]; %t A282579 g = 2 * stages + 1; (* Maximum size of grid *) %t A282579 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *) %t A282579 ca = a; %t A282579 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; %t A282579 PrependTo[ca, a]; %t A282579 (* Trim full grid to reflect growth by one cell at each stage *) %t A282579 k = (Length[ca[[1]]] + 1)/2; %t A282579 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}]; %t A282579 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i ,1, stages - 1}] %Y A282579 Cf. A282088, A282142, A282577. %K A282579 nonn,easy %O A282579 0,3 %A A282579 _Robert Price_, Feb 27 2017