cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282586 Coefficients in q-expansion of E_2^3*E_4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

This page as a plain text file.
%I A282586 #12 Feb 27 2018 02:58:51
%S A282586 1,168,-13608,210336,1805496,-22562064,-322437024,-2063087808,
%T A282586 -9165872520,-32250917496,-96383477232,-254377990944,-608736541728,
%U A282586 -1346209592784,-2786771573568,-5459635814976,-10197462567432,-18283324047408,-31620880746504
%N A282586 Coefficients in q-expansion of E_2^3*E_4, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.
%H A282586 Seiichi Manyama, <a href="/A282586/b282586.txt">Table of n, a(n) for n = 0..1000</a>
%t A282586 terms = 19;
%t A282586 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t A282586 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282586 E2[x]^3*E4[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282586 Cf. A282019 (E_2*E_4), A282208 (E_2^2*E_4), this sequence (E_2^3*E_4).
%K A282586 sign
%O A282586 0,2
%A A282586 _Seiichi Manyama_, Feb 19 2017