cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282596 Coefficients in q-expansion of E_2*E_4^2*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

This page as a plain text file.
%I A282596 #13 Feb 27 2018 04:58:04
%S A282596 1,-48,-196128,-33542976,-678319104,12136422240,509314518144,
%T A282596 7469015889792,68272650653760,458377820557584,2454769903187520,
%U A282596 11035857376010304,43103740076823552,149954656815201504,473331019057949952,1375248429330791040,3719662610125117632
%N A282596 Coefficients in q-expansion of E_2*E_4^2*E_6, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.
%H A282596 Seiichi Manyama, <a href="/A282596/b282596.txt">Table of n, a(n) for n = 0..1000</a>
%t A282596 terms = 17;
%t A282596 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t A282596 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282596 E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
%t A282596 E2[x]* E4[x]^2 *E6[x] + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282596 Cf. A282102 (E_2*E_4*E_6), A282547 (E_2*E_4*E_6^2).
%K A282596 sign
%O A282596 0,2
%A A282596 _Seiichi Manyama_, Feb 19 2017