cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282600 a(n) = Sum_(k=1..phi(n)) floor(d_k/2) where d_k are the totatives of n.

This page as a plain text file.
%I A282600 #15 Dec 19 2019 10:59:24
%S A282600 0,0,1,1,4,2,9,6,12,8,25,10,36,18,28,28,64,24,81,36,60,50,121,44,120,
%T A282600 72,117,78,196,56,225,120,160,128,204,102,324,162,228,152,400,120,441,
%U A282600 210,264,242,529,184,504,240,400,300,676,234,540,324,504,392,841,232
%N A282600 a(n) = Sum_(k=1..phi(n)) floor(d_k/2) where d_k are the totatives of n.
%C A282600 The totatives of n are the numbers k <= n with gcd(k,n) = 1.
%H A282600 Robert Israel, <a href="/A282600/b282600.txt">Table of n, a(n) for n = 1..10000</a>
%H A282600 David Zmiaikou, <a href="https://tel.archives-ouvertes.fr/tel-00648120/">Origamis and permutation groups</a>, Thesis, 2011. See p. 65.
%F A282600 If n is odd, a(n) = A023896(n)/2 - A000010(n)/4;
%F A282600 If n is even, a(n) = A023896(n)/2 - A000010(n)/2.
%o A282600 (PARI) a(n) = sum(k=1, n, (k\2)*(gcd(n, k)==1));
%Y A282600 Cf. A000010, A023896, A038566, A066840, A282601.
%K A282600 nonn,look
%O A282600 1,5
%A A282600 _Michel Marcus_, Feb 19 2017