cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282612 Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to row permutations.

Original entry on oeis.org

0, 1, 120, 3654, 45760, 333375, 1703016, 6784540, 22500864, 64836045, 167167000, 393877506, 861456960, 1769830699, 3447273480, 6412923000, 11461636096, 19776716505, 33076889784, 53804808190, 85365336000, 132422893911, 201268229800, 300266132244, 440396812800
Offset: 0

Views

Author

David Nacin, Feb 19 2017

Keywords

Comments

Cycle index of symmetry group is (3*s(2)^3*s(1)^3 + 2*s(3)^3 + s(1)^9)/6.

Examples

			The number of 3 X 3 binary matrices up to row permutations is 120.
		

Crossrefs

Cf. A282613, A282614, A217331, A168555. A037270 (2x2 version.)

Programs

  • Mathematica
    Table[(3n^6+2n^3+n^9)/6, {n, 0, 24}]
  • PARI
    concat(0, Vec(x*(1 + 110*x + 2499*x^2 + 14500*x^3 + 26015*x^4 + 14934*x^5 + 2365*x^6 + 56*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017

Formula

a(n) = n^3*(n^3+2)*(n+1)*(n^2-n+1)/6.
G.f.: x*(1 + 110*x + 2499*x^2 + 14500*x^3 + 26015*x^4 + 14934*x^5 + 2365*x^6 + 56*x^7) / (1 - x)^10. - Colin Barker, Feb 23 2017