A282612 Number of inequivalent 3 X 3 matrices with entries in {1,2,3,..,n} up to row permutations.
0, 1, 120, 3654, 45760, 333375, 1703016, 6784540, 22500864, 64836045, 167167000, 393877506, 861456960, 1769830699, 3447273480, 6412923000, 11461636096, 19776716505, 33076889784, 53804808190, 85365336000, 132422893911, 201268229800, 300266132244, 440396812800
Offset: 0
Examples
The number of 3 X 3 binary matrices up to row permutations is 120.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Programs
-
Mathematica
Table[(3n^6+2n^3+n^9)/6, {n, 0, 24}]
-
PARI
concat(0, Vec(x*(1 + 110*x + 2499*x^2 + 14500*x^3 + 26015*x^4 + 14934*x^5 + 2365*x^6 + 56*x^7) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Feb 23 2017
Formula
a(n) = n^3*(n^3+2)*(n+1)*(n^2-n+1)/6.
G.f.: x*(1 + 110*x + 2499*x^2 + 14500*x^3 + 26015*x^4 + 14934*x^5 + 2365*x^6 + 56*x^7) / (1 - x)^10. - Colin Barker, Feb 23 2017
Comments