This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282615 #35 Jul 15 2025 08:59:19 %S A282615 0,1,1,3,4,9,20,35,102,160,736,930,5972,6766,59017,61814,671651, %T A282615 675379,8844028,8675583,130880467,126385830,2163551657,2049560059, %U A282615 39112954305,36883483406,768337929193,720918897940,16279025598443,15303083773040,373743187469167,349148771223261,9095126347788632 %N A282615 Number of self-conjugate separable solutions of X + Y = 2Z (integer, disjoint triples from {1,2,3,...,3n}). %C A282615 An inseparable solution is one in which "there is no j such that the first j of the triples are a partition of 1, ..., 3j" (see A202705). %C A282615 A self-conjugate solution is one in which for every triple (a, b, c) in the partition there exists a "conjugate" triple (m-a, m-b, m-c) or (m-b, m-a, m-c) where m = 3n+1. %C A282615 | separable | inseparable | either | %C A282615 -------------------+-----------+-------------+---------+ %C A282615 self-conjugate | A282615 | A279197 | A282616 | %C A282615 non-self-conjugate | A282618 | A282617 | A282619 | %C A282615 either | A279199 | A202705 | A104429 | %F A282615 a(n) = A282616(n) - A279197(n). %F A282615 a(n) = A279199(n) - A282618(n). %F A282615 a(n) = Sum_{i=1..floor(n/2)} A202705(i) * (A282616(n-2*i) if n>2*i else 1) = Sum_{i=1..floor(n/2)} A104429(i) * (A279197(n-2*i) if n>2*i else 1). - _Martin Fuller_, Jul 15 2025 %e A282615 For n = 4 the a(4) = 3 solutions are: %e A282615 (10,12,11),(7,9,8),(4,6,5),(1,3,2), %e A282615 (10,12,11),(5,9,7),(4,8,6),(1,3,2), and %e A282615 (8,12,10),(7,11,9),(2,6,4),(1,5,3). %Y A282615 Cf. A104429, A202705, A279197, A279199, A282616, A282617, A282618, A282619. %Y A282615 All of A279197, A279198, A202705, A279199, A104429, A282615 are concerned with counting solutions to X+Y=2Z in various ways. %K A282615 nonn %O A282615 1,4 %A A282615 _Peter Kagey_, Feb 19 2017 %E A282615 a(11)-a(16) from _Fausto A. C. Cariboni_, Feb 27 2017 %E A282615 a(17) from _Fausto A. C. Cariboni_, Mar 22 2017 %E A282615 a(18)-a(24) from _Bert Dobbelaere_, May 29 2025 %E A282615 a(25)-a(33) from _Martin Fuller_, Jul 15 2025