cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282633 Numbers n such that n^2 + 1 is the sum of two proper prime powers (A246547) in more than one way.

Original entry on oeis.org

47, 73, 83, 133, 157, 173, 187, 191, 203, 217, 317, 319, 353, 437, 463, 467, 487, 499, 557, 577, 583, 593, 599, 613, 623, 697, 703, 727, 733, 767, 829, 857, 863, 871, 931, 983, 1013, 1027, 1033, 1067, 1087, 1097, 1123, 1139, 1177, 1267, 1279, 1321, 1327, 1333, 1363, 1403, 1409, 1433, 1453, 1477, 1487, 1493, 1507, 1517, 1543, 1567, 1603, 1607, 1613
Offset: 1

Views

Author

Robert Israel and Altug Alkan, Feb 19 2017

Keywords

Examples

			83 is a term because 83^2 + 1 = 7^4 + 67^2 = 43^2 + 71^2.
		

Crossrefs

Programs

  • Maple
    N:= 10^8: # to get all terms <= sqrt(N-1).
    PP:= sort([seq(seq(p^k, k=2..floor(log[p](N))), p = select(isprime, [2, seq(i, i=3..floor(sqrt(N)), 2)]))]):
    npp:= nops(PP):
    res:= {}: R:= 'R':
    for i from 2 to npp do
       for j from 1 to i-1 do
         q:= PP[i]+PP[j];
         if q > N then break fi;
          if issqr(q-1) then
           if assigned(R[q]) then res:= res union {q}
            else R[q]:= 1
          fi fi
    od od:
    sort(convert(map(t -> sqrt(t-1), res),list));