A282633 Numbers n such that n^2 + 1 is the sum of two proper prime powers (A246547) in more than one way.
47, 73, 83, 133, 157, 173, 187, 191, 203, 217, 317, 319, 353, 437, 463, 467, 487, 499, 557, 577, 583, 593, 599, 613, 623, 697, 703, 727, 733, 767, 829, 857, 863, 871, 931, 983, 1013, 1027, 1033, 1067, 1087, 1097, 1123, 1139, 1177, 1267, 1279, 1321, 1327, 1333, 1363, 1403, 1409, 1433, 1453, 1477, 1487, 1493, 1507, 1517, 1543, 1567, 1603, 1607, 1613
Offset: 1
Keywords
Examples
83 is a term because 83^2 + 1 = 7^4 + 67^2 = 43^2 + 71^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..2672
Programs
-
Maple
N:= 10^8: # to get all terms <= sqrt(N-1). PP:= sort([seq(seq(p^k, k=2..floor(log[p](N))), p = select(isprime, [2, seq(i, i=3..floor(sqrt(N)), 2)]))]): npp:= nops(PP): res:= {}: R:= 'R': for i from 2 to npp do for j from 1 to i-1 do q:= PP[i]+PP[j]; if q > N then break fi; if issqr(q-1) then if assigned(R[q]) then res:= res union {q} else R[q]:= 1 fi fi od od: sort(convert(map(t -> sqrt(t-1), res),list));