A282647 T(n,k)=Number of nXk 0..1 arrays with no 1 equal to more than one of its king-move neighbors.
2, 4, 4, 7, 11, 7, 13, 27, 27, 13, 24, 76, 99, 76, 24, 44, 201, 413, 413, 201, 44, 81, 537, 1601, 2638, 1601, 537, 81, 149, 1444, 6349, 15460, 15460, 6349, 1444, 149, 274, 3859, 25153, 92817, 133118, 92817, 25153, 3859, 274, 504, 10339, 99287, 557439, 1190848
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..1. .0..0..0..0. .1..0..0..1. .0..1..0..0. .0..1..0..0 ..0..1..0..1. .1..0..1..0. .0..1..0..1. .0..0..0..0. .0..0..0..1 ..1..0..0..0. .0..0..1..0. .0..0..0..0. .1..0..0..1. .0..0..0..1 ..0..0..0..0. .1..0..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..364
Crossrefs
Column 1 is A000073(n+3).
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = a(n-1) +3*a(n-2) +4*a(n-3)
k=3: a(n) = 2*a(n-1) +6*a(n-2) +8*a(n-3) -5*a(n-4) +2*a(n-5) -2*a(n-6)
k=4: [order 9]
k=5: [order 21]
k=6: [order 30]
k=7: [order 66]
Comments