This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282672 #34 Jan 26 2021 04:02:07 %S A282672 1,1138842118714300,1605078397568386,1785922862964240, %T A282672 1878157384495600,2020105305316098,2055406015517400,2071857393746595, %U A282672 2310442996851990,2450253379658700,2513216312053944,2966830431558840,2990886595291870,3228082757486928,3318987930069240 %N A282672 Numbers k such that the central binomial coefficient C(2*k,k) is divisible by k^6. %C A282672 Also numbers k such that the k-th Catalan number C(2*k,k)/(k+1) is divisible by k^6. %C A282672 The asymptotic density of this sequence is 3.40390904801... *10^(-13) (Ford and Konyagin, 2021). - _Amiram Eldar_, Jan 26 2021 %H A282672 Giovanni Resta, <a href="/A282672/b282672.txt">Table of n, a(n) for n = 1..97</a> %H A282672 Kevin Ford and Sergei Konyagin, <a href="https://doi.org/10.1090/tran/8183">Divisibility of the central binomial coefficient binomial(2n, n)</a>, Trans. Amer. Math. Soc., Vol. 374, No. 2 (2021), pp. 923-953; <a href="https://arxiv.org/abs/1909.03903">arXiv preprint</a>, arXiv:1909.03903 [math.NT], 2019-2020. %e A282672 Let E(n,p) be the exponent of the prime p in the factorization of n. Note that E(n!,p) can be easily found with Legendre's formula without computing n!. Then, t = 1138842118714300 is in the sequence because for each prime p dividing t we have E(C(2*t,t),p) = E((2*t)!,p) - 2*E(t!,p) >= 6*E(t,p). %Y A282672 Cf. A000108, A000984, A014847, A121943, A282163, A282346, A283073, A283074. %K A282672 nonn %O A282672 1,2 %A A282672 _Giovanni Resta_, Mar 16 2017