A282686 Least sum of two proper prime powers (A246547) that is the product of n distinct primes.
13, 33, 130, 966, 14322, 81510, 3530730, 117535110, 2211297270, 131031070170, 1295080356570, 163411918786830, 3389900689405230, 414524121952915590, 2951531806477464210, 754260388389042905370
Offset: 1
Examples
a(1) = 13 = 2^2 + 3^2. a(2) = 33 = 5^2 + 2^3 = 3 * 11. a(3) = 130 = 3^2 + 11^2 = 2 * 5 * 13. a(4) = 966 = 5^3 + 29^2 = 2 * 3 * 7 * 23. a(5) = 14322 = 17^3 + 97^2 = 2 * 3 * 7 * 11 * 31. a(6) = 81510 = 29^3 + 239^2 = 2 * 3 * 5 * 11 * 13 * 19. a(7) = 3530730 = 41^4 + 89^3 = 2 * 3 * 5 * 7 * 17 * 23 * 43. a(8) = 117535110 = 461^3 + 4423^2 = 2 * 3 * 5 * 7 * 11 * 17 * 41 * 73. From _Jon E. Schoenfield_, Mar 14 2017: (Start) a(9) = 2211297270 = 1301^3 + 3037^2 = 2 * 3 * 5 * 7 * 13 * 17 * 29 * 31 * 53. a(10) = 131031070170 = 1361^3 + 358483^2 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 43 * 47 * 127. (End) From _Giovanni Resta_, Mar 14 2017: (Start) a(11) = 810571^2 + 8609^3, a(12) = 12694849^2 + 13109^3. (End) From _Jon E. Schoenfield_, Mar 18 2017: (Start) a(13) = 24537703^2 + 140741^3. a(14) = 639414679^2 + 178349^3. a(15) = 1632727069^2 + 658649^3. (End) a(16) = 1472015189^2 + 9094049^3. - _Jon E. Schoenfield_, Mar 19 2017
Programs
-
Maple
N:= 1.2*10^8: # to get all terms <= N PP:= {seq(seq(p^k,k=2..floor(log[p](N))), p = select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]))}: PP:= sort(convert(PP,list)): A:= 'A': for i from 1 to nops(PP) do for j from 1 to i do Q:= PP[i]+PP[j]; if Q > N then break fi; F:= ifactors(Q)[2]; if max(seq(f[2],f=F))>1 then next fi; m:= nops(F); if not assigned(A[m]) or A[m] > Q then A[m]:= Q fi od od: seq(A[i],i=1..max(map(op,[indices(A)]))); # Robert Israel, Mar 01 2017
-
Mathematica
(* first 8 terms *) mx = 1.2*^8; a = 0 Range[8] + mx; p = Sort@ Flatten@ Table[ p^Range[2, Log[p, mx]], {p, Prime@ Range@ PrimePi@ Sqrt@ mx}]; Do[ j=1; While[j <= i && (v = p[[i]] + p[[j]]) < mx, f = FactorInteger@v; If[Max[Last /@ f] == 1, c = Length@f; If[c < 9 && v < a[[c]], a[[c]] = v]]; j++], {i, Length@p}]; a (* Giovanni Resta, Mar 19 2017 *)
-
PARI
do(lim)=my(v=List(),u=v,t,f); t=1; for(i=1,lim, t*=prime(i); if(t>lim,break); listput(v, oo)); v=Vec(v); for(e=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim-4,e), listput(u,p^e))); u=Set(u); for(i=1,#u, for(j=1,i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t
if(k==oo,"?",k), v) \\ Charles R Greathouse IV, Mar 19 2017 -
PARI
do(lim)=my(v=List(),u=v,t,f,p2); t=1; for(i=1,lim, t*=prime(i); if(t>lim,break); listput(v, oo)); v=Vec(v); for(e=3,logint(lim\=1,2), forprime(p=2,sqrtnint(lim-4,e), listput(u,p^e))); u=Set(u); for(i=1,#u, for(j=1,i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t
lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t if(k==oo,"?",k), v) \\ Charles R Greathouse IV, Mar 19 2017
Extensions
a(7)-a(8) from Giovanni Resta, Feb 21 2017
a(9)-a(10) from Jon E. Schoenfield, Mar 14 2017
a(11)-a(12) from Giovanni Resta, Mar 14 2017
a(13)-a(15) from Jon E. Schoenfield, Mar 18 2017
a(16) from Jon E. Schoenfield, Mar 19 2017
Comments