A282687 a(n) = strictly increasing number m, such that m+n is the next prime and m-n is the previous prime.
4, 5, 26, 93, 144, 157, 300, 1839, 1922, 3099, 3240, 4189, 5544, 5967, 6506, 10815, 11760, 12871, 30612, 33267, 35002, 36411, 81486, 86653, 95676, 103263, 106060, 153219, 181332, 189097, 190440, 288615, 294596, 326403, 399318, 507253, 515004, 570291, 642320
Offset: 1
Keywords
Examples
For n = 5, a(5) = 144, because the next prime after 144 is 149 and the previous prime before 144 is 139, where both have an equal distance of 5 from 144.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
a = {}; Do[If[n == 1, k = 1, k = Max@ a + 1]; While[Nand[k - n == NextPrime[k, -1], k + n == NextPrime@ k], k++]; AppendTo[a, k], {n, 41}]; a (* Michael De Vlieger, Feb 20 2017 *)
-
Perl
use ntheory qw(:all); for (my ($n, $k) = (1, 1) ; ; ++$n) { my $p = prev_prime($n) || next; my $q = next_prime($n); if ($n-$p == $k and $q-$n == $k) { printf("%s %s\n", $k++, $n); } }