A282690 a(n) is the smallest number m, such that m+n is the next prime and m-n is the previous prime.
4, 5, 26, 93, 144, 53, 120, 1839, 532, 897, 1140, 211, 2490, 2985, 4312, 5607, 1344, 9569, 30612, 19353, 16162, 15705, 81486, 16787, 31932, 19635, 35644, 82101, 44322, 43361, 34092, 89721, 162176, 134547, 173394, 31433, 404634, 212739, 188068, 542643, 265662
Offset: 1
Keywords
Examples
For n = 6, a(6) = 53, because the next prime after 53 is 59 and the previous prime before 53 is 47, where both have an equal distance of 6 from 53, which is the smallest number with this property.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
Table[k = 1; While[Nand[k - n == NextPrime[k, -1], k + n == NextPrime@ k], k++]; k, {n, 41}] (* Michael De Vlieger, Feb 20 2017 *)
-
Perl
use ntheory qw(:all); for (my $k = 1 ; ; ++$k) { for (my $n = 1 ; ; ++$n) { my $p = prev_prime($n) || next; my $q = next_prime($n); if ($n-$p == $k and $q-$n == $k) { printf("%s %s\n", $k, $n); last; } } }