This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282714 #46 Aug 26 2018 19:30:32 %S A282714 1,1,1,1,1,1,1,2,0,1,1,1,2,0,1,1,2,1,1,0,1,1,2,2,1,0,0,1,1,3,0,3,0,0, %T A282714 0,1,1,1,3,0,3,0,0,0,1,1,2,2,1,1,2,0,0,0,1,1,2,3,1,1,1,1,0,0,0,1,1,3, %U A282714 1,3,0,2,0,1,0,0,0,1,1,2,4,1,2,0,2,0,0 %N A282714 Base-2 generalized Pascal triangle P_2 read by rows (see Comments for precise definition). %C A282714 List the binary numbers in their natural order as binary strings, beginning with the empty string epsilon, which represents 0. Row n of the triangle gives the number of times the k-th string occurs as a (scattered) substring of the n-th string. %C A282714 Row n has sum n+1. %H A282714 Lars Blomberg, <a href="/A282714/b282714.txt">Table of n, a(n) for n = 0..10000</a> %H A282714 Julien Leroy, Michel Rigo, Manon Stipulanti, <a href="http://dx.doi.org/10.1016/j.disc.2017.01.003">Counting the number of non-zero coefficients in rows of generalized Pascal triangles</a>, Discrete Mathematics 340 (2017), 862-881. %H A282714 Julien Leroy, Michel Rigo, Manon Stipulanti, <a href="https://arxiv.org/abs/1705.10065">Counting Subwords Occurrences in Base-b Expansions</a>, arXiv:1705.10065 [math.CO], 2017. %H A282714 Julien Leroy, Michel Rigo, Manon Stipulanti, <a href="http://math.colgate.edu/~integers/sjs13/sjs13.Abstract.html">Counting Subwords Occurrences in Base-b Expansions</a>, Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A13. %H A282714 Manon Stipulanti, <a href="https://arxiv.org/abs/1801.03287">Convergence of Pascal-Like Triangles in Parry-Bertrand Numeration Systems</a>, arXiv:1801.03287 [math.CO], 2018. %e A282714 Triangle begins: %e A282714 1, %e A282714 1,1, %e A282714 1,1,1, %e A282714 1,2,0,1, %e A282714 1,1,2,0,1, %e A282714 1,2,1,1,0,1, %e A282714 1,2,2,1,0,0,1, %e A282714 1,3,0,3,0,0,0,1, %e A282714 1,1,3,0,3,0,0,0,1 %e A282714 1,2,2,1,1,2,0,0,0,1 %e A282714 1,2,3,1,1,1,1,0,0,0,1 %e A282714 1,3,1,3,0,2,0,1,0,0,0,1 %e A282714 1,2,4,1,2,0,2,0,0,0,0,0,1 %e A282714 ... %e A282714 The binary numbers are epsilon, 1, 10, 11, 100, 101, 110, 111, 1000, ... %e A282714 The fifth number 101 contains %e A282714 eps 1 10 11 100 101 respectively %e A282714 .1..2..1..1...0...1 times, which is row 5 of the triangle. %p A282714 Nscatsub := proc(subw,w) %p A282714 local lsubw,lw,N,wri,wr,i ; %p A282714 lsubw := nops(subw) ; %p A282714 lw := nops(w) ; %p A282714 N := 0 ; %p A282714 if lsubw = 0 then %p A282714 return 1 ; %p A282714 elif lsubw > lw then %p A282714 return 0 ; %p A282714 else %p A282714 for wri in combinat[choose](lw,lsubw) do %p A282714 wr := [] ; %p A282714 for i in wri do %p A282714 wr := [op(wr),op(i,w)] ; %p A282714 end do: %p A282714 if verify(subw,wr,'sublist') then %p A282714 N := N+1 ; %p A282714 end if; %p A282714 end do: %p A282714 end if; %p A282714 return N ; %p A282714 end proc: %p A282714 P := proc(n,k,b) %p A282714 local n3,k3 ; %p A282714 n3 := convert(n,base,b) ; %p A282714 k3 := convert(k,base,b) ; %p A282714 Nscatsub(k3,n3) ; %p A282714 end proc: %p A282714 A282714 := proc(n,k) %p A282714 P(n,k,2) ; %p A282714 end proc: # _R. J. Mathar_, Mar 03 2017 %t A282714 nmax = 12; %t A282714 row[n_] := Module[{bb, ss}, bb = Table[IntegerDigits[k, 2], {k, 0, n}]; ss = Subsets[Last[bb]]; Prepend[Count[ss, #]& /@ bb // Rest, 1]]; %t A282714 Table[row[n], {n, 0, nmax}] // Flatten (* _Jean-François Alcover_, Dec 14 2017 *) %Y A282714 A007306 gives (essentially) the number of nonzero entries in the rows. %K A282714 nonn,tabl %O A282714 0,8 %A A282714 _N. J. A. Sloane_, Mar 02 2017 %E A282714 More terms from _Lars Blomberg_, Mar 03 2017