This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282722 #16 Nov 27 2017 10:41:39 %S A282722 0,9,44,293,461,758,1022,1799,2530,3171,4778,5068,7662,8470,9993, %T A282722 14097,16674,19467,20755,25701,29042,34471,37506,40661,45066,48541, %U A282722 54324,54224,58135,60351,68593,75432,74014,83881,85900,98518,112000,117443,122241,132125,143322,151299,163180,161975,181191 %N A282722 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic residues mod p that are > p/2. %H A282722 Jean-François Alcover, <a href="/A282722/b282722.txt">Table of n, a(n) for n = 1..1000</a> %H A282722 Christian Aebi, Grant Cairns, <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv:1512.00896 [math.NT], 2015. %p A282722 with(numtheory): %p A282722 Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[]; %p A282722 for i1 from 1 to 300 do %p A282722 p:=ithprime(i1); %p A282722 if (p mod 8) = 3 then %p A282722 ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; %p A282722 for j from 1 to p-1 do %p A282722 if legendre(j,p)=1 then %p A282722 q:=q+j; %p A282722 if j<p/2 then ql:=ql+j; else qu:=qu+j; fi; %p A282722 else %p A282722 n:=n+j; %p A282722 if j<p/2 then nl:=nl+j; else nu:=nu+j; fi; %p A282722 fi; %p A282722 od; %p A282722 Ql:=[op(Ql),ql]; %p A282722 Qu:=[op(Qu),qu]; %p A282722 Q:=[op(Q),q]; %p A282722 Nl:=[op(Nl),nl]; %p A282722 Nu:=[op(Nu),nu]; %p A282722 N:=[op(N),n]; %p A282722 Th:=[op(Th),q+ql]; %p A282722 fi; %p A282722 od: %p A282722 Ql; Qu; Q; Nl; Nu; N; Th; # A282721 - A282727 %p A282722 # 2nd program %p A282722 A282722 := proc(n) %p A282722 local p,ar; %p A282722 p := A007520(n) ; %p A282722 a := 0 ; %p A282722 for r from (p+1)/2 to p do %p A282722 if numtheory[legendre](r,p) = 1 then %p A282722 a := a+r ; %p A282722 end if; %p A282722 end do: %p A282722 a ; %p A282722 end proc: %p A282722 seq(A282722(n),n=1..10) ; # _R. J. Mathar_, Apr 07 2017 %t A282722 b[1] = 3; b[n_] := b[n] = Module[{p}, p = NextPrime[b[n - 1]]; While[Mod[p, 8] != 3, p = NextPrime[p]]; p]; %t A282722 a[n_] := Module[{p, q, r}, p = b[n]; q = 0; For[r = (p + 1)/2, r <= p, r++, If[KroneckerSymbol[r, p] == 1, q = q + r]]; q]; %t A282722 Array[a, 45] (* _Jean-François Alcover_, Nov 27 2017, after _R. J. Mathar_ *) %Y A282722 Cf. A282035-A282043 and A282721-A282727. %K A282722 nonn %O A282722 1,2 %A A282722 _N. J. A. Sloane_, Feb 20 2017