This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282723 #12 Apr 07 2017 12:58:22 %S A282723 1,22,76,430,767,1072,1577,2675,3930,4587,6520,7518,10761,12258,14809, %T A282723 19527,23025,26811,29148,35247,41900,47844,52771,57938,61377,66944, %U A282723 73845,76568,79940,83941,94088,102237,104781,114744,117470,134498,152678,161389,167881,181249,193377,204075,221598,228185 %N A282723 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic residues mod p. %H A282723 Vincenzo Librandi, <a href="/A282723/b282723.txt">Table of n, a(n) for n = 1..2500</a> %H A282723 Aebi, Christian, and Grant Cairns. <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 (2015). %p A282723 with(numtheory): %p A282723 Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[]; %p A282723 for i1 from 1 to 300 do %p A282723 p:=ithprime(i1); %p A282723 if (p mod 8) = 3 then %p A282723 ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; %p A282723 for j from 1 to p-1 do %p A282723 if legendre(j,p)=1 then %p A282723 q:=q+j; %p A282723 if j<p/2 then ql:=ql+j; else qu:=qu+j; fi; %p A282723 else %p A282723 n:=n+j; %p A282723 if j<p/2 then nl:=nl+j; else nu:=nu+j; fi; %p A282723 fi; %p A282723 od; %p A282723 Ql:=[op(Ql),ql]; %p A282723 Qu:=[op(Qu),qu]; %p A282723 Q:=[op(Q),q]; %p A282723 Nl:=[op(Nl),nl]; %p A282723 Nu:=[op(Nu),nu]; %p A282723 N:=[op(N),n]; %p A282723 Th:=[op(Th),q+ql]; %p A282723 fi; %p A282723 od: %p A282723 Ql; Qu; Q; Nl; Nu; N; Th; # A282721 - A282727 %t A282723 Table[Table[Mod[a^2, p], {a, 1, (p-1)/2}]//Total, {p, Select[Prime[Range[100]], Mod[#, 8] == 3 &]}] (* _Vincenzo Librandi_, Feb 21 2017 *) %Y A282723 Cf. A282035-A282043 and A282721-A282727. %K A282723 nonn %O A282723 1,2 %A A282723 _N. J. A. Sloane_, Feb 20 2017