This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282724 #13 Nov 27 2017 11:35:24 %S A282724 0,2,13,94,129,247,306,555,745,999,1579,1555,2466,2653,3059,4581,5430, %T A282724 6351,6658,8409,9087,11158,11996,12858,14814,15788,17880,17277,18950, %U A282724 19481,22400,24876,23518,27448,28115,32285,36743,38269,39851,43111,47406,50055,53683,51645,58274,66410,65119,76013,80465 %N A282724 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic nonresidues mod p that are < p/2. %H A282724 Jean-François Alcover, <a href="/A282724/b282724.txt">Table of n, a(n) for n = 1..1000</a> %H A282724 Aebi, Christian, and Grant Cairns. <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 (2015). %p A282724 with(numtheory): %p A282724 Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[]; %p A282724 for i1 from 1 to 300 do %p A282724 p:=ithprime(i1); %p A282724 if (p mod 8) = 3 then %p A282724 ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; %p A282724 for j from 1 to p-1 do %p A282724 if legendre(j,p)=1 then %p A282724 q:=q+j; %p A282724 if j<p/2 then ql:=ql+j; else qu:=qu+j; fi; %p A282724 else %p A282724 n:=n+j; %p A282724 if j<p/2 then nl:=nl+j; else nu:=nu+j; fi; %p A282724 fi; %p A282724 od; %p A282724 Ql:=[op(Ql),ql]; %p A282724 Qu:=[op(Qu),qu]; %p A282724 Q:=[op(Q),q]; %p A282724 Nl:=[op(Nl),nl]; %p A282724 Nu:=[op(Nu),nu]; %p A282724 N:=[op(N),n]; %p A282724 Th:=[op(Th),q+ql]; %p A282724 fi; %p A282724 od: %p A282724 Ql; Qu; Q; Nl; Nu; N; Th; # A282721 - A282727 %p A282724 # 2nd program %p A282724 A282724 := proc(n) %p A282724 local p,a,r; %p A282724 p := A007520(n) ; %p A282724 a := 0 ; %p A282724 for r from 1 to (p-1)/2 do %p A282724 if numtheory[legendre](r,p) <> 1 then %p A282724 a := a+r ; %p A282724 end if; %p A282724 end do: %p A282724 a ; %p A282724 end proc: %p A282724 seq(A282724(n),n=1..10) ; # _R. J. Mathar_, Apr 07 2017 %t A282724 b[1] = 3; b[n_] := b[n] = Module[{p}, p = NextPrime[b[n - 1]]; While[Mod[p, 8] != 3, p = NextPrime[p]]; p]; %t A282724 a[n_] := Module[{p, q, r}, p = b[n]; q = 0; For[r = 1, r <= (p - 1)/2, r++, If[KroneckerSymbol[r, p] != 1, q = q + r]]; q]; %t A282724 Array[a, 50] (* _Jean-François Alcover_, Nov 27 2017, after _R. J. Mathar_ *) %Y A282724 Cf. A282035-A282043 and A282721-A282727. %K A282724 nonn %O A282724 1,2 %A A282724 _N. J. A. Sloane_, Feb 20 2017