This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282726 #13 Nov 05 2020 13:48:05 %S A282726 2,33,95,473,944,1139,1826,2996,4585,5004,6683,8413,11394,13393,16566, %T A282726 20376,23946,27804,30883,36384,45671,50059,56040,62357,62874,69559, %U A282726 75486,81635,82795,88050,97183,104166,112030,118159,120925,138193,156613,167066,173670,187262,196026,206796,226333,242750 %N A282726 Let p = n-th prime == 3 mod 8; a(n) = sum of quadratic nonresidues mod p . %H A282726 Vincenzo Librandi, <a href="/A282726/b282726.txt">Table of n, a(n) for n = 1..2500</a> %H A282726 Aebi, Christian, and Grant Cairns. <a href="http://arxiv.org/abs/1512.00896">Sums of Quadratic residues and nonresidues</a>, arXiv preprint arXiv:1512.00896 (2015). %p A282726 with(numtheory): %p A282726 Ql:=[]; Qu:=[]; Q:=[]; Nl:=[]; Nu:=[]; N:=[]; Th:=[]; %p A282726 for i1 from 1 to 300 do %p A282726 p:=ithprime(i1); %p A282726 if (p mod 8) = 3 then %p A282726 ql:=0; qu:=0; q:=0; nl:=0; nu:=0; n:=0; %p A282726 for j from 1 to p-1 do %p A282726 if legendre(j,p)=1 then %p A282726 q:=q+j; %p A282726 if j<p/2 then ql:=ql+j; else qu:=qu+j; fi; %p A282726 else %p A282726 n:=n+j; %p A282726 if j<p/2 then nl:=nl+j; else nu:=nu+j; fi; %p A282726 fi; %p A282726 od; %p A282726 Ql:=[op(Ql),ql]; %p A282726 Qu:=[op(Qu),qu]; %p A282726 Q:=[op(Q),q]; %p A282726 Nl:=[op(Nl),nl]; %p A282726 Nu:=[op(Nu),nu]; %p A282726 N:=[op(N),n]; %p A282726 Th:=[op(Th),q+ql]; %p A282726 fi; %p A282726 od: %p A282726 Ql; Qu; Q; Nl; Nu; N; Th; # A282721 - A282727 %t A282726 Table[Table[Mod[a^2, p/2], {a, 1, (p-1)}]//Total, {p, Select[Prime[ Range[ 200]], Mod[#, 8] == 3 &]}] (* _Vincenzo Librandi_, Feb 22 2017 *) %Y A282726 Cf. A282035-A282043 and A282721-A282727. %K A282726 nonn %O A282726 1,1 %A A282726 _N. J. A. Sloane_, Feb 20 2017