cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282737 Expansion of (x^6 - x^4 + x^3 - x - 1)/((x - 1)^3*(x + 1)^2).

This page as a plain text file.
%I A282737 #13 Dec 22 2023 11:55:50
%S A282737 1,2,4,5,9,10,15,16,22,23,30,31,39,40,49,50,60,61,72,73,85,86,99,100,
%T A282737 114,115,130,131,147,148,165,166,184,185,204,205,225,226,247,248,270,
%U A282737 271,294,295,319,320,345,346,372,373,400,401,429,430,459,460,490,491,522,523,555,556,589,590,624
%N A282737 Expansion of (x^6 - x^4 + x^3 - x - 1)/((x - 1)^3*(x + 1)^2).
%D A282737 Mark Thomas, Email to N. J. A. Sloane, Mar 03 2017
%H A282737 Colin Barker, <a href="/A282737/b282737.txt">Table of n, a(n) for n = 0..1000</a>
%H A282737 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A282737 From _Colin Barker_, Mar 04 2017: (Start)
%F A282737 a(n) = (n^2 + 14*n) / 8 for n>1 and even.
%F A282737 a(n) = (n^2 + 12*n - 5) / 8 for n>1 and odd.
%F A282737 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. (End)
%o A282737 (PARI) Vec((x^6 - x^4 + x^3 - x - 1)/((x - 1)^3*(x + 1)^2) + O(x^60)) \\ _Colin Barker_, Mar 04 2017
%Y A282737 First differences give A282738.
%K A282737 nonn,easy
%O A282737 0,2
%A A282737 _N. J. A. Sloane_, Mar 04 2017