A282749 Triangle read by rows: T(n,k) is the number of partitions of n into k parts x_1, x_2, ..., x_k such that gcd(x_i, x_j) = 1 for all i != j (where 1<=k<=n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 5, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 6, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 2, 1, 1, 1, 1, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 5, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1, 1, 6, 2, 7, 2, 4, 2, 3, 1, 2, 1, 1, 1, ...
Links
- Alois P. Heinz, Rows n = 1..200, flattened (first 100 rows from Lars Blomberg)
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
Formula
It seems that no general formula or recurrence is known.
Comments