cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282752 Coefficients in q-expansion of E_2^2*E_4^2, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.

This page as a plain text file.
%I A282752 #12 Feb 27 2018 02:59:03
%S A282752 1,432,39312,-1711296,-14159664,317412000,5783500224,47251354752,
%T A282752 263098098000,1138294453104,4105673192160,12882680040384,
%U A282752 36171259008192,92764213434144,220523509245312,491705284878720,1037366470830672,2086141009345632,4022101701933264
%N A282752 Coefficients in q-expansion of E_2^2*E_4^2, where E_2 and E_4 are respectively the Eisenstein series A006352 and A004009.
%H A282752 Seiichi Manyama, <a href="/A282752/b282752.txt">Table of n, a(n) for n = 0..1000</a>
%t A282752 terms = 19;
%t A282752 E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t A282752 E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
%t A282752 E2[x]^2*E4[x]^2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%Y A282752 Cf. A282019 (E_2*E_4), A282208 (E_2^2*E_4), A282101 (E_2*E_4^2).
%K A282752 sign
%O A282752 0,2
%A A282752 _Seiichi Manyama_, Feb 21 2017