This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282760 #7 Feb 23 2017 22:54:11 %S A282760 2,4,6,8,9,10,12,14,16,18,19,28,56,147,566,1301,4288,8576,13088, %T A282760 119396,518800,634825,654780,993476,2109420,3034105,6466772,17838948, %U A282760 80148824 %N A282760 5*n analog to Keith numbers. %C A282760 Like Keith numbers but starting from 5*n digits to reach n. %C A282760 Consider the digits of 5*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %e A282760 5*14 = 70: %e A282760 7 + 0 = 7; %e A282760 0 + 7 = 7; %e A282760 7 + 7 = 14. %p A282760 with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h); %p A282760 for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then %p A282760 for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od; %p A282760 if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000,5); %t A282760 Select[Range[10^6], Function[n, Module[{d = IntegerDigits[5 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; %t A282760 s == n]]] (* _Michael De Vlieger_, Feb 22 2017, after _T. D. Noe_ at A007629 *) %Y A282760 Cf. A282757 - A282759, A282761 - A282765. %K A282760 nonn,base %O A282760 1,1 %A A282760 _Paolo P. Lava_, Feb 22 2017