This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282764 #6 Feb 23 2017 22:54:34 %S A282764 9,17,48,55,96,120,124,131,244,426,787,1893,5307,5364,5600,10083, %T A282764 31085,46733,52700,53456,56857,56920,109620,110313,110376,374016, %U A282764 2989245,4081505,5173765,13017112,17242512,34346372,34638676 %N A282764 9*n analog to Keith numbers. %C A282764 Like Keith numbers but starting from 9*n digits to reach n. %C A282764 Consider the digits of 9*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %e A282764 9*17 = 153: %e A282764 1 + 5 + 3 = 9; %e A282764 5 + 3 + 9 = 17. %p A282764 with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h); %p A282764 for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then %p A282764 for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od; %p A282764 if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000,9); %t A282764 Select[Range[10^6], Function[n, Module[{d = IntegerDigits[9 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* _Michael De Vlieger_, Feb 22 2017, after _T. D. Noe_ at A007629 *) %Y A282764 Cf. A282757 - A282763, A282765. %K A282764 nonn,base %O A282764 1,1 %A A282764 _Paolo P. Lava_, Feb 22 2017