This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282768 #14 Mar 07 2017 20:58:34 %S A282768 55,110,165,220,275,330,385,440,495,530,47270,119710,685385,21526000, %T A282768 6055017240 %N A282768 n/5 analog of Keith numbers. %C A282768 Like Keith numbers but starting from n/5 digits to reach n. %C A282768 Consider the digits of n/5. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %C A282768 If it exists, a(16) > 10^12. - _Lars Blomberg_ Mar 07 2017 %e A282768 530/5 = 106: %e A282768 1 + 0 + 6 = 7; %e A282768 0 + 6 + 7 = 13; %e A282768 6 + 7 + 13 = 26; %e A282768 7 + 13 + 26 = 46; %e A282768 13 + 26 + 46 = 85; %e A282768 26 + 46 + 85 = 157; %e A282768 46 + 85 + 157 = 288; %e A282768 85 + 157 + 288 = 530. %p A282768 with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h); %p A282768 for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then %p A282768 for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); %p A282768 while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od; %p A282768 if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000,1/5); %t A282768 With[{n = 5}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* _Michael De Vlieger_, Feb 27 2017 *) %Y A282768 Cf. A282757 - A282765, A282766, A282767, A282769. %K A282768 nonn,base,more %O A282768 1,1 %A A282768 _Paolo P. Lava_, Feb 27 2017 %E A282768 a(15) from _Lars Blomberg_, Mar 07 2017