This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A282769 #14 Mar 07 2017 20:58:06 %S A282769 301,602,1113,4942,478205,23942940,47885880,178114489749 %N A282769 n/7 analog of Keith numbers. %C A282769 Like Keith numbers but starting from n/7 digits to reach n. %C A282769 Consider the digits of n/7. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %C A282769 If it exists, a(9) > 10^12. - _Lars Blomberg_ Mar 07 2017 %e A282769 1113/7 = 159: %e A282769 1 + 5 + 9 = 15; %e A282769 5 + 9 + 15 = 29; %e A282769 9 + 15 + 29 = 53; %e A282769 15 + 29 + 53 = 97; %e A282769 29 + 53 + 97 = 179; %e A282769 53 + 97 + 179 = 329; %e A282769 97 + 179 + 329 = 605; %e A282769 179 + 329 + 605 = 1113. %p A282769 with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h); %p A282769 for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then %p A282769 for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); %p A282769 while v[t]<n do t:=t+1; v[t]:=add(v[k], k=t-b..t-1); od; %p A282769 if v[t]=n then print(n); fi; fi; od; end: P(10^6, 1000,1/7); %t A282769 With[{n = 7}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* _Michael De Vlieger_, Feb 27 2017 *) %Y A282769 Cf. A282757 - A282765, A282766 - A282768. %K A282769 nonn,base,more %O A282769 1,1 %A A282769 _Paolo P. Lava_, Feb 27 2017 %E A282769 a(8) from _Lars Blomberg_, Mar 07 2017