cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282772 Starting from F(n), minimum number, greater than 1, of consecutive Fibonacci numbers whose average is an integer.

This page as a plain text file.
%I A282772 #16 Oct 02 2018 04:37:28
%S A282772 4,2,3,12,2,13,3,2,6,5,2,12,4,2,3,12,2,24,3,2,6,24,2,12,4,2,3,12,2,5,
%T A282772 3,2,6,13,2,12,4,2,3,5,2,24,3,2,5,24,2,12,4,2,3,12,2,24,3,2,6,24,2,5,
%U A282772 4,2,3,12,2,24,3,2,6,5,2,12,4,2,3,12,2,24,3,2,6
%N A282772 Starting from F(n), minimum number, greater than 1, of consecutive Fibonacci numbers whose average is an integer.
%C A282772 Entries are 2, 3, 4, 5, 6, 12, 13 and 24.
%C A282772 Periodic with period equal to 420.
%H A282772 Paolo P. Lava, <a href="/A282772/b282772.txt">Table of n, a(n) for n = 0..1000</a>
%F A282772 a(3*k + 1) = 2;
%F A282772 a(12*k + 2) = a(12*k + 6) = 3;
%F A282772 a(12*k) = 4;
%F A282772 a(30*k + 9) = a(30*k + 29) = a(60*k + 44) = 5;
%F A282772 a(60*k + 8) = a(60*k + 20) = a(60*k + 32) = a(60*k + 56) = 6;
%F A282772 a(60*k + 3) = a(60*k + 11) = a(60*k + 15) = a(60*k + 23) = a(60*k + 27) = a(60*k + 35) = a(60*k + 47) = a(60*k + 51) = 12;
%F A282772 a(420*k + 5) = a(420*k + 33) = a(420*k + 117) = a(420*k + 173) = a(420*k + 201) = a(420*k + 257) = a(420*k + 285) = a(420*k + 341) = 13;
%F A282772 a(420*k + x) = 24, with x = 17, 21, 41, 45, 53, 57, 65, 77, 81, 93, 101, 105, 113, 125, 137, 141, 153, 161, 165, 177, 185, 197, 213, 221, 225, 233, 237, 245, 261, 273, 281, 293, 297, 305, 317, 321, 333, 345, 353, 365, 377, 381, 393, 401, 405, 413, 417.
%e A282772 a(0) = 4 because F(0) + F(1) + F(2) + F(3) = 0 + 1 + 1 + 2 = 4 and 4/4 = 1;
%e A282772 a(1) = 2 because F(1) + F(2) = 1 + 1 = 2 and 2/2 = 1;
%e A282772 a(2) = 3 because F(2) + F(3) + F(4) = 1 + 2 + 3 = 6 and 6/3 = 2;
%e A282772 a(3) = 12 because F(3) + F(4) + ... + F(13) + F(14) =  2 + 3 + ... + 233 + 377 = 984 and 984/12 = 82.
%p A282772 with(combinat): P:=proc(q) local a,k,n; for k from 0 to q do a:=fibonacci(k); for n from 1 to q do a:=a+fibonacci(k+n);
%p A282772 if type(a/(n+1),integer) then print(n+1); break; fi; od; od; end: P(10^3);
%t A282772 Table[k = 1; While[! IntegerQ@ Mean@ Take[#, n ;; n + k], k++]; k + 1, {n, Length@ # - 24}] &@ Fibonacci@ Range[0, 419] (* _Michael De Vlieger_, Mar 06 2017 *)
%Y A282772 Cf. A000045, A101907, A111035, A254141.
%K A282772 nonn,easy
%O A282772 0,1
%A A282772 _Paolo P. Lava_, Mar 03 2017